社友网(新版)

 找回密码
 立即注册
搜索
查看: 532|回复: 0

微软沈向洋对话Yoshua Bengio:强化学习在自动驾驶领域可能会非常重要

[复制链接]
admin 发表于 2017-9-10 05:35:14 | 显示全部楼层 |阅读模式
选自微软作者: Allison Linn等机器之心编译参与:李泽南、吴攀
20120919093043371.jpg
微软全球副总裁沈向洋
在微软今年 1 月宣布收购 Maluuba 时,深度学习先驱 Yoshua Bengio 同意随这家公司一同加入微软并担任顾问,为微软的人工智能贡献自己的力量。Yoshua Bengio 目前是蒙特利尔学习算法研究所(MILA)主任和蒙特利尔大学计算机科学教授。在二十多年的教学生涯中,他教育出了 Ian Goodfellow 等著名学者。最近,Bengio 探访了微软在华盛顿州 Redmond 的园区,并与微软副总裁沈向洋进行了一次对话。

沈向洋:让我们先从最简单的开始吧:什么是深度学习?
Yoshua Bengio:深度学习是机器学习的一种形式,机器学习是计算机通过学习大量真实世界的例子来获取智能的一种方法。深度学习在所有机器学习方法中显得非常独特,它受到了人类大脑结构的一点启发。它可以让计算机学会多层次的抽象概念和表示,这是这些系统成功的原因。
沈向洋:你能举一个人们使用深度学习的例子吗?
Yoshua Bengio:深度学习最为常用的方法被称为监督学习(supervised learning),在这种方式下,我们向计算机提供大量例子,这些例子会告诉计算机在许多不同的情况下应该如何做。例如:我们有数百万条某人朗读句子的语音数据,同时我们有其语音转录,然后我们希望计算机知道如何将声音转录成文字。在训练后,计算机就可以通过输入学会理解真实世界,就像人类所做的一样。简而言之,计算机试图通过很多例子在来任务中模仿人类。
沈向洋:深度学习已经发展了数十年之久,它是如何从早期的蛰伏走出来,成为今天的热门学科的?
Yoshua Bengio:人工智能起源于 20 世纪 50 年代末,人们开始思考人工智能,然后人们突然想到:嘿,我们应该看看大脑是如何运作的,那里面应该有很多可用于构建智能机器的线索。随后人工智能沉寂了一段时间,直到 80 年代初才重新被提起,在 90 年代初又再次沉寂,因为当时它并不如人们所期望的那样强大。现在已经是第三波浪潮了,这一波是深度学习。大约 5 年前,深度学习突然在语音识别、物体识别等应用领域出现了惊人的突破。最近,自然语言应用(如机器翻译)也已经进入了实用阶段。
沈向洋:作为一名深度学习的专家,你认为目前最激动人心的研究是哪个方面?
Yoshua Bengio:我认为目前最激动人心的领域在于无监督学习(unsupervised learning)。在这个方向上,目前最好的机器学习与深度学习还远不及人类的水平。一个两岁的人类孩子只需观察世界和与世界互动就能学习。例如:他/她可以通过玩和观察来了解重力和压力这样的物理特性——而不需要去上物理课。这就是无监督学习。而对于人工智能来说,机器还远未实现这样的能力,不过目前我们在这方面的研究已经有了很大的进展。这非常重要,为了让机器在当前非常有限的任务之外实现更大的发展,我们需要无监督学习。
沈向洋:在微软,我们经常谈到通过人工智能来增强人类经验,从而帮助我们完成任务。你认为在这一方面未来人工智能最有希望的能力是什么?
Yoshua Bengio:首先,在人工智能领域,特别是自然语言处理领域,最重要的任务是让计算机可以与人类更自然地交流。现在,当我希望与计算机进行交互时,我会感到很沮丧,我不知道如何把信息传递给计算机,也无法从计算机获取我想要的信息。自然语言处理是让程序员之外的人能够更大程度地操作计算机的有效方式。但除此之外,我们希望计算机能真正理解我们的需求和问题并帮助我们找到信息,同时还能推理和帮助我们工作,这个想法非常有前途。
沈向洋:此前,你曾经说过深度学习经常被说成是受大脑运行方式启发的技术。深度神经网络是如何受我们对人类大脑工作方式的理解的启发的?这意味着深度学习具有怎样的潜力?
Yoshua Bengio:在神经网络发展的起始阶段,有一种想法:大脑中执行的计算可被抽象成大脑中每个神经元执行的非常简单的数学运算。神经网络所做的是将所有这些小运算组合在一起,而其中的每个神经元的计算可以被改变或调整。这对应于生物神经突触的变化,这或许就是人类学习的方式。我们将这种理念应用于机器学习中,让计算机学会整合所有元素的结果,这种方法非常强大。
沈向洋:但目前人类对自己大脑的认识还很有限,我们距离真正理解大脑运行方式还有多远?
Yoshua Bengio:大脑是一个巨大的谜团。你可以将其看作是一幅巨大的拼图。我们已经有了所有的元素,全世界数以万计的神经科学家都在研究他们各自许多不同的元素,但我们似乎缺少一种大局观。但作为计算机领域的研究者,我们相信并希望在深度学习上的探索可以帮助人们找到这种大局观。当然,未来很难说,但目前在把机器学习和深度学习中的数学思想与神经科学进行整合以帮助理解大脑运作方式方面,科学界也已经出现了很多激动人心的想法。当然,我也希望有更多的研究方向,因为目前的深度学习还远未达到人类的智能水平。人类的大脑可以做很多机器无法做到的事情,所以在未来,深度学习系统也许可以从大脑中获得更多启示。
沈向洋:近年来,我们听到了有关人工智能可以做什么的很多预测。你认为人工智能或深度学习技术最终可以达到模拟人类思考的程度吗?
Yoshua Bengio:我曾多次被问到这个问题,而我的答案一直是「我不知道。」而且我认为严肃的科学家永远不会对此有一个直截了当的回答,因为目前还存在太多的未知。根据定义,我们现在正在研究这个领域是因为这里还有很多问题有待解决。我们的确正在进步,我们也认为事情正在正确发展的轨道上。但比如:让计算机能够正确理解更抽象的困难问题还需要多久?这样的问题是无法回答的。是五年、十五年还是五十年?目前我们看到了一些障碍,我们正在着手解决它们,但这些可能只是冰山一角。
沈向洋:你能谈谈在人工智能技术的大背景下,深度学习适合扮演怎样的角色?
Yoshua Bengio:深度学习改变了人工智能几十年来的面貌,它采取了很多传统人工智能的方法,并将其整合在一起。在这里最著名的例子就是深度学习和强化学习的融合。
强化学习是机器学习的一种,在这种方法下,机器并不了解人类在这种情况下会做什么。学习器只能看到一系列动作后的结果是好是坏。目前在这方面的很多研究都集中在游戏方面,但强化学习对于自动驾驶汽车这样的应用来说也可能非常重要。
原文链接:https://blogs.microsoft.com/next ... d01f06tf21a88lgok55

本文为机器之心编译,转载请联系本公众号获得授权。
✄------------------------------------------------

加入机器之心(全职记者/实习生):hr@jiqizhixin.com投稿或寻求报道:editor@jiqizhixin.com广告&商务合作:bd@jiqizhixin.com               

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|Archiver|手机版|粤ICP备12005776号-5|su.sseuu.com  

GMT+8, 2024-11-25 20:37 , Processed in 0.066093 second(s), 20 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表