社友网(新版)

 找回密码
 立即注册
搜索
查看: 606|回复: 0

《未来简史》最恐怖的预测:99%的人类将被代替

[复制链接]
admin 发表于 2017-7-18 18:11:52 | 显示全部楼层 |阅读模式
  尤瓦尔·赫拉利推荐小结:《未来简史》为畅销书《人类简史》的姊妹篇,该书强调了基因技术、人工智能等前沿技术可能正在重塑人类和世界。在书中,尤瓦尔·赫拉利提出了一个震撼性的观点:未来世界,大部分人类可能是多余的。


fb8c120321cd7b55b9e68d38d808fb85.jpg
本文摘自《未来简史》,内容有删减。尤瓦尔·赫拉利是全球著名畅销书《人类简史》的作者,而《未来简史》可以视作《人类简史》的姊妹篇,该书强调了基因技术、人工智能等前沿技术可能正在重塑人类和世界。在书中,尤瓦尔·赫拉利提出了一个震撼性的观点:未来世界,大部分人类可能是多余的。请享用:21世纪经济学最重要的问题,可能就是多余的人能有什么功用。一旦拥有高度智能而本身没有意识的算法接手几乎一切工作,而且能比有意识的人类做得更好时,人类还能做什么?
纵观历史,就业市场可分为三个主要部门:农业、工业和服务业。在大约公元1800年前,绝大多数人属于农业部门,只有少数人在工业和服务业部门。到了工业革命时期,发达国家的人民就离开了田野和牧群。大多数人进入工业部门,但也有越来越多的人走向服务部门。到了最近几十年,发达国家又经历了另一场革命:工业部门的职位逐渐消失,服务业大幅扩张。2010年,美国的农业人口只剩2%,工业人口有20%,占了78%的是教师、医生、网页设计师等服务业从业人员。但等到机械算法在教书、诊断病情和设计方面比人类更在行的时候,我们能做什么?
这个问题以前就出现过。自工业革命爆发以来,人类就担心机械化可能导致大规模失业。然而,这种情况在过去并未发生,因为随着旧职业被淘汰,会有新职业出现,人类总有些事情做得比机器更好。只不过,这一点并非定律,也没人敢保证未来一定会继续如此。人类有两种基本能力:身体能力和认知能力。在机器与人类的竞争仅限于身体能力时,人类还有数不尽的认知任务可以做得更好。所以,随着机器取代纯体力工作,人类便转向专注于需要至少一些认知技能的工作。然而,一旦等到算法在记忆、分析和辨识各种模式的能力上超过人类,会发生什事?
如果认为人类永远都能有自己独特的能力,无意识的算法永远无法赶上,这只能说是一厢情愿。对于这种空想,目前的科学反馈可以简单概括为三项原则:
1、生物是算法。每种动物(包括智人)都是各种有机算法的集合,经过数百万年进化自然选择而成。
2、算法的运作不受组成物质的影响。算盘的算珠无论是木质、铁质还是塑料质,两个珠子加上两个珠子还是等于四个珠子。
3、因此,没有理由相信非有机算法永远无法复制或超越有机算法能做的事。只要运算结果有效,算法是以碳来表现还是硅来表现又有何差别?
确实,目前还有许多事情是有机算法比非有机算法做得更好,也有专家反复声称,有些事情非有机算法「永远」都无法做到。但事实是,通常这里的「永远」都不超过一二十年。
「99%的人类特性和能力都是多余的!」
就像在不久之前,大家还很喜欢用面部识别举例,说这项任务连婴儿都能轻松办到,可是最强大的计算机却无力完成。但到了今天,面部识别程序辨认人脸的速度和效率都已经远超人类。警方和情报机构现在已经很习惯使用这种程序,扫描监控录像机无数小时的视频资料,追踪嫌犯和罪犯。
20世纪80年代讨论到人类的独特之处时,很习惯用国际象棋作为人类能力更强的主要证据。他们相信计算机永远不可能在国际象棋领域打败人类。但在1996年2月10日,IBM的超级计算机「深蓝」(Deep Blue)就打败了世界国际象棋大师加里·卡斯帕罗夫(GarryKasparov),推翻了这个认为人类能力更强的论点。
「深蓝」算是有些取巧,因为编写程序的人不仅写入了国际象棋的基本规则,还加入了详细的棋局策略。但新一代的人工智能更喜欢让机器自己学。2015年2月,由Google DeepMind人工智能公司所开发的一个程序,就自己学会了如何去玩49款经典的Atari游戏。开发者一戴米斯·哈萨比斯( Demis Hassabis)博士解释道:「我们提供给系统的唯一信息就是屏幕上的原始像素,以及指示系统要努力得到高分。剩下的一切都是它自己解出来的。」而这套程序也成功找出了交给它的所有游戏的规则,从《吃豆人》(Pac-Man)、《太空入侵者》(Spacezvaders)到各种赛车和网球游戏。而且,这套程序得到的分数多半都能打平甚至超过人类,有时候还会使出人类玩家从未想到的策略。
不久之后,人工智能又获得了更惊人的成就:谷歌的AlphaGo软件自学围棋这种古老的中国棋类游戏,而围棋的复杂度远超国际象棋,一般认为这并不在人工智能程序能够处理的范围内。2016年3月,AlphaGo和韩国棋王李世石在首尔举行了一场比赛,AlphaGo凭借出奇的下法、创新的战略,以4比l击败李世石,令各方大跌眼镜。赛前,大多数专业棋手都确信李世石能赢得比赛,但在赛后分析AlphaGo的棋路后,多数人的结论则是人类在围棋上已不再有希望能打败AlphaGo或其后来者。
467eebf9fdbc01a356a2dc849c05c3d3.jpg
近来,计算机算法也证明了自己在球类竞赛中的价值。几十年来,棒队挑选球员靠的是专业球探和经理的智慧、经验和直觉。顶尖球员的身价高达数百万美元,自然财力雄厚的球队才能抢下一流球员,而经拮据的球队只能勉强起用二线球员。但在2002年,预算有限的奥克兰运动家队(Oakland Athletics)总经理比利·比恩(Billy Beane)尝试要打破这个格局。他决定根据经济学家和计算机怪才所开发的一套神秘计算机算法,找出人类球探忽视或低估的球员,打造一支常胜队伍。在保守派看来,比恩的算法根本是玷污棒球的神圣殿堂,他们大感愤怒。他们坚决认为球员的选择是一门艺术,只有长期亲近棒球、相关经验丰富的人,才有可能掌握。至于计算机程序,因为它永远无法懂得其中的奥秘和棒球的精神,所以永远都不可能学会这一套。
但没多久,令这些人颇感意外的是,比恩用算法打造的这支低成本球队(4400万美元),不仅能与纽约扬基队(1.25亿美元)这种传统棒球强队平分秋色,甚至还成为美国职业棒球大联盟史上第一支20连胜的队伍。只不过,比恩和运动家队没能得意太久。很快,其他球队也跟进使用同样的算法策略,而且由于扬基队和红袜队不管在球员还是计算机软件上能砸的钱都远远胜出,现在像奥克兰运动家队这种低预算球队;能打败整个体制的机会反而更小了。
2004年,麻省理工学院的弗兰克·利维(Frank Levy)教授与哈佛大学的理查德·默南( Richard Murnane)教授发表了一份关于就业市场的全面研究报告,列出最有可能击向自动化的职业。当时讲到在可预见的未来不可能实现自动化的职业时举的例子是卡车司机。他们表示,实在很难想象计算机可以在繁忙的道路上让汽车实现安全行驶。但才不过十几年,谷歌和特斯拉不仅想到了这一点,还在加紧研发。
事实上,随着时间的推移,不仅是因为算法变得更聪明,也是因为人类逐渐走向专业化,所以用计算机来取代人类越来越容易。远古的狩猎者只是想要生存下去,就得掌握各式各样的技能,也正因为如此,想设计狩猎机器人的难度非常大。这种机器人得要懂如何把燧石磨出尖头,在森林中找到可食用的蘑菇,跟踪猛犸象,与其他十几个猎人协调何进攻,之后还得知道怎么用药草来治疗伤口。但在过去几千年间,人类已经走向专业化。比起狩猎者,出租车司机或心脏病专科医生所做的事更为有限,也就更容易被人工智能取代。
我已一再强调,人工智能目前绝无法做到与人类匹敌。但对大多数的现代工作来说。99%的人类特性及能力都是多余的。人工智能要把人类挤出就业市场,只要在特定行业需要的特定能力上超越人类,就已足够。
2014年5月,专注于再生医学领域的香港创投公司Deep Knowledge Ventures( DKV)另创新局,任命一套名为VITAL的算法为董事会成员。VITAL会分析候选公司的财务状况、临床试验和知识产权等大量资料,据以提出投资建议。这套算法就像另外五位董事一样,能够投票决定是否投资某家公司。
我们查看VITAL到目前为止的记录,发现它似乎已经学到了一个管理弊病:裙带关系。将较多权力交给算法的公司,就更有可能得到VITAL的青睐。例如在VITAL的支持下,DKV最近就投资了制药公司Pathway Pharmaceuticals,该公司采用了一套被称为OncoFinder的算法来选择及评估针对个人的癌症疗法。
随着算法将人类挤出就业市场,财富和权力可能会集中在拥有强大算法的极少数精英手中,造成前所未有的社会及政治不平等。在今天,人数达到数百万的出租车司机、公交车司机和卡车司机拥有强大的经济和政治影响力,每个人都在交通运输市场中发挥自己的力量。如果集体利益受到威胁,他们可以团结起来,组织罢工、进行抵抗,形成重要的投票群体。然而,一旦数百万的人类司机都由单一算法取代,这一切财富和权力都将被拥有算法的公司垄断,放入这些公司的所有人,即极少数几位亿万富翁的口袋。
  艺术家也可以被机器取代?
常有人说,艺术是我们最终的圣殿(而且是人类独有的)。等到计算机取代了医生、司机、教师甚至地主和房东时,会不会所有人都成为艺术家?然而,并没有理由让人相信艺术创作是片能完全不受算法影响的净土。人类是哪来的信心,认为计算机谱曲永远无法超越人类?从生命科学的角度来看,艺术并不是出自什么神灵或超自然灵魂,而是有机算法发现数学模式之后的产物。若真是如此,非有机算法就没有理由不能掌握。
戴维·柯普( David Cope)是加州大学圣克鲁兹分校的音乐学教授,也是古典音乐界极具争议的人物。柯普写了一些计算机程序,能够谱出协奏曲、合唱曲、交响乐和歌剧。他写出的第一个程序名为EMI(Experiments in Musical Intelligence,音乐智能的实验),专门模仿巴赫的风格。虽然写程序花了7年,但一经推出,EMI短矩一天就谱出5000首巴赫风格的赞美诗。柯普挑出几首,安排在圣克鲁兹的一次音乐节上演出。演出激动人心,观众反应热烈,兴奋地讲着这些音乐如何碰触到他们内心最深处。观众并不知道作曲者是EMI而非巴赫,而等到真相揭开,有些人气得一语不发,也有人甚至发出怒吼。

4a5744f155077085b85d49f36dd71ff3.jpg
EMI继续更新,学会了如何模仿贝多芬、肖邦、拉赫玛尼诺夫和斯特拉文斯基。柯普还为EMI签了合约,首张专辑《计算机谱曲的古典乐》受到意想不到的欢迎。人红是非多,古典音乐爱好者的敌意也涌现出来。俄勒冈大学的史蒂夫·拉尔森( Steve Larson)就向柯普挑战,来一场人机音乐对决。拉尔森提议,由专业钢琴家连续弹奏三首曲目,作曲者分别是巴赫、EMI以及拉尔森本人,接着让观众投票是谁谱了哪首曲子。
拉尔森坚信,一边是人类的灵魂之作,一边是机器人的死气沉沉,观众肯定一听就能判出。柯普接下了战书。在指定的当天,数百位讲师、学生和音乐迷齐聚俄勒冈大学的音乐厅。表演结束,进行投票。结果呢?观众认为是巴赫的其实是EMI,认为是拉尔森的其实是巴赫,而他们认为是EMI的,其实是拉尔森。
还是有人继续批评,说EMI的音乐虽然技术出众,但还是缺了些什么,一切太过准确,没有深度,没有灵魂。但只要人们在不知作曲者是谁的情况下听到EMI的作品,常常会大赞这些作品充满灵魂和情感的共鸣。
EMI成功之后,柯普又继续写出了更复杂的新程序:安妮(Annie)。EMI谱曲是根据预定的规则,而安妮则是基于机器学习,会随着外界新的音乐输入,不断变化发展音乐风格。就连柯普也不知道安妮接下来会谱出什么作品。而且事实上,安妮除了写音乐,还对其他艺术形式很感兴趣,比如俳句。
2011年,柯普出版了《激情之夜:人和机器所作的俳句两千首》,其中有一部分早安妮写的,其他则来自真正的诗人。但书中并未透露具体篇目的作者是谁。如果你认为自己一定可以看出人举创作与机器产出的差异,欢迎挑战。
               
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|Archiver|手机版|粤ICP备12005776号-5|su.sseuu.com  

GMT+8, 2024-11-25 20:39 , Processed in 0.179521 second(s), 21 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表